Acta Cryst. (1963). 16, 853

The crystal structure of YCu₂.* By Prabhat K. Kejriwal and Earle Ryba, Department of Metallurgy, The Pennsylvania State University, University Park, Pennsylvania, U.S.A.

(Received 7 January 1963 and in revised form 1 March 1963)

Four intermetallic compounds have been reported in the yttrium-copper system (Daane & Spedding, 1957; Domagala, Rausch & Levinson, 1961). The crystal structure of one of these compounds, YCu₂, is the subject of this communication. Storm & Benson (1963) have determined from powder X-ray data that the compound YCu₂ is isostructural with CeCu₂ (Larson & Cromer, 1961). We also found this and discuss here our independent determination of the structure of YCu₂ by single-crystal techniques.

Several samples of YCu₂, prepared by conventional arc melting techniques, were examined by powder and single-crystal methods. Cu $K\alpha$ radiation was used. Oscillation and Weissenberg photographs for a number of single crystals indicated that the compound was bodycentered orthorhombic with $a=4\cdot3$, $b=6\cdot9$, $c=7\cdot3$ Å. A Debye–Scherrer pattern of YCu₂ was subsequently indexed and the lattice constants found were $a=4\cdot308\pm0\cdot003$, $b=6\cdot891\pm0\cdot008$, $c=7\cdot303\pm0\cdot007$ Å. These results substantially agree with those of Storm & Benson, who report $a=4\cdot305\pm0\cdot005$, $b=6\cdot800\pm0\cdot005$, $c=7\cdot315\pm0\cdot005$ Å, except for the b parameter.

Table 1. Final parameters in YCu₂ from the least squares refinement

Atom	Position	\boldsymbol{x}	$oldsymbol{y}$	z	B (Å ²)
\mathbf{Y}	4e	0	1	0.546 ± 0.002	0.46
Cu	8h	0	0.052 ± 0.002	0.162 ± 0.002	1.50

Table 2. Observed and calculated structure factors of YCu.

			o_j i cu_2				
hkl	F_o	F_c		hkl	F_o	$\boldsymbol{F_c}$	
002	35	26		053	62	53	
004	47	-39		055	140	140	
006	98	83		060	127	-114	
008	64	-61		062	52	-48	
011	26	16		064	18	-11	
013	89	83		071	71	-65	
015	124	125		073	46	-53	
013	38	46		075	24	-33 -19	
019	29	25		082	91	$-\frac{19}{72}$	
020	13	17		044	N.O.	19	
020	19	17		044	14.0.	19	
022	116	-160		035	N.O.	-6	
024	81	100		046	N.O.	8	
026	73	82		057	N.O.	11	
031	129	-143		028	N.O.	26	
033	70	-85		066	N.O.	-13	
037	84	 104					
040	154	136					
042	68	67					
048	40	-41					
051	82	 67					

^{*} This work was supported in part by the National Science Foundation.

Table 3. Interatomic distances in YCu,

Y-2 Y Y-2 Y Y-2 Cu	3·679 Å 3·508 3·114	Cu-1 Y Cu-2 Y Cu-1 Y	3·114 Å 3·113 2·982
Y-4 Cu	3.113	Cu-2 Y	2.963
Y-2 Cu	2.982	Cu-1 Cu	2.722
Y–4 Cu	2.963	Cu-2 Cu	2.506
		Cu-1 Cu	2.474

The orthorhombic unit cell contains four formula units of YCu₂, and the calculated X-ray density is $6\cdot62~\mathrm{g.cm^{-3}}$. Systematic absences of reflections from single crystals indicated that the space group is either Im2a or Imma. Visual estimation of intensities from equiinclination Weissenberg photographs was made for two single crystals. For crystal A, (hkl) data with l=0 to 4 were obtained; for crystal B, (0kl) data were obtained. The resulting intensities were corrected for Lorentz and polarization factors, but only the data for crystal A were corrected for absorption since crystal B was very irregular in shape.

(hk0), (h0l), and (0kl) Patterson projections were found in satisfactory agreement only with a postulated structure in which four yttrium atoms and eight copper atoms are in the 4e and 8h equipoint positions, respectively, of the space group Imma. Since this postulated structure is the same as the structure of CeCu₂, the parameters given for CeCu₂ were chosen as the trial parameters for YCu₂. The trial structure of YCu₂ was refined for both sets of intensity data by the diagonal least-squares method. The residuals for the data for crystals A and B were found to be 16.6% and 13.6%, respectively, after 15 cycles of refinement. The positional parameters obtained from two sets of data were almost identical. The results of the refinement of the data for crystal B are given in Table 1. The calculated and observed structure factors for this data are given in Table 2, and the interatomic distances are given in Table 3.

All of the crystals of this compound which were examined exhibit some twinning, and it was expected that the intensity measurements would be somewhat in error. The possibility of a phase transformation in this compound which would produce the twinning is being investigated.

We would like to thank R.F.Domagala, Armour Research Foundation, for providing one of the alloy samples.

References

DAANE, A. H. & SPEDDING, F. H. (1957). Semi-annual Research Report, ISC-976, Ames Laboratory, Iowa State University.

Domagala, R. F., Rausch, J. J. & Levinson, D. W. (1961). Trans. Amer. Soc. Metals. 53, 137.

LARSON, A. C. & CROMER, D. T. (1961). Acta Cryst. 14, 73. STORM, A. R. & BENSON, K. E. (1963). Acta Cryst. 16, 701.